BIONIC BASIC
by
Glynn Owen

Copyright 1981
by

Apparat, Inc.
DENVER, CO 80237

AN

&N\ Apparat, Inc.

BIONIC BASIC -- PAGE 1

WHAT IS IT ?°?
BIONIC BASIC is a means of increasing the vocabulary of MICROSOFT's DISK
BASIC as supported by the TRS-80 MODEL I computer. This is accomplished
by teaching DISK BASIC to recognize new words, and to take the
appropriate action each time one of those new words is encountered. The
action consists of executing a particular machine language routine which
BIONIC BASIC has appended to the BASIC/CMD file. Such an appendage will
load along with the other DISK BASIC features each time DISK BASIC is
requested by the Disk Operating System.

BIONIC BASIC LIBRARY ROUTINES are appended to a specific copy of the
BASIC/CMD file by using the BIONIC BASIC modules. These modules are
machine language programs that may be used to customize any particular

copy of BASIC/CMD with any or all of the LIBRARY ROUTINES available.
There are three BIONIC BASIC modules.

THE FIREUP/CMD MODULE
This module is used to prepare the BASIC/CMD file on the system diskette
that is in drive O when the module is invoked. Like most other machine
language programs, this module is invoked from DOS by entering its name.
There are four requirements that must be met before the FIREUP module
can be invoked.
1. The FIREUP/CMD program must be on-line.
2. The BIONIC BASIC LIBRARY FILE named CMD/CMD
must be on-line.
3. The diskette in drive 0 must have a copy of the
BASIC/CMD.BASIC file, and at least 2 free GRANS.
4, The resident Disk Operating System must be the
same one that supports the copy of BASIC/CMD
found on drive O.

Once these conditions are met, type the name FIREUP, and hit ENTER.
Program operation is automatic from this point on.

When the FIREUP module is finished, it will display this message:
STARTUP PACKAGE INSTALLED

This is just to let you know that everything went according to plan.
Considerable error checking is done during the execution of the FIREUP
module. Any errors should be caught before the BASIC/CMD file on drive
0 is altered. If an error does occur, make a note of the message
displayed, correct the error, and try again.

Using the FIREUP module on a copy of BASIC/CMD will not make any changes
that are visible or useful to the user. This module appends about 200
bytes of code to the BASIC/CMD file that are used by the ROM interpreter
to find the LIBRARY ROUTINES when they are installed. No results will
be apparent until one or more LIBRARY ROUTINES are installed in this
copy of the BASIC/CMD file. Please note that the BASIC/CMD file as
specified above must include the standard BASIC password "BASIC".

BIONIC BASIC -- PAGE 2

THE INSTALL/CMD MODULE

As you can guess from its name, this module is used to imstall LIBRARY

FILES. Like FIREUP, it is invoked from DOS by entering its name. The

name of the LIBRARY FILE that is being installed must be passed to the

INSTALL module. This is done at the same time the module is invoked by
following the module name with a space, and then typing the name of the
routine. For instance, the LIBRARY FILE named SORT would be installed

by entering the command:

INSTALL SORT

The space between the name of the module and the name of the LIBRARY
FILE is mandatory.

Before the INSTALL module is invoked, be sure that:

1. The INSTALL module is on-line.

2. The LIBRARY FILE being installed is on-line.

3. The diskette in drive 0 has a copy of the
BASIC/CMD.BASIC file, and at least 2 free GRANS.

4. The resident Disk Operating System is the same
one that supports the copy of BASIC/CMD found on
drive 0.

Again, please note that the copy of the BASIC/CMD file on drive 0 must
include the password "BASIC".

If you try to use the INSTALL module on a copy of BASIC/CMD that has not
been operated upon by the FIREUP module, the INSTALL module will tell
you so, and abort its run. Likewise, if you try to INSTALL a routine in
BASIC that is already there, the module will tell you so, and abort its
TUun.

When the INSTALL module is finished, it will display this message:

INSTALLATION COMPLETE

This is just to let you know that everything went according to plan.
Considerable error checking is done during the execution of the INSTALL
module. Any errors should be caught before the BASIC/CMD file on drive
0 is altered. If an error does occur, make a note of the message
displayed, correct the error, and try again. It is important to realize
that the LIBRARY FILE named to the INSTALL module will actually be
appended to the BASIC/CMD.BASIC file on the SYSTEM diskette in Drive 0.
If there is not enough room for the expanded BASIC/CMD file, the INSTALL
will fail.

THE REMOVE/CMD MODULE
This module is used to remove unwanted BIONIC BASIC LIBRARY FILES from
the copy of BASIC/CMD in drive 0. It is invoked in exactly the same
format as the INSTALL module. Before using this module, be sure that:

BIONIC BASIC —-- PAGE 3

1. The REMOVE module is on-line.
2. The diskette in drive 0 has a copy of the
BASIC/CMD.BASIC file.
3. The resident Disk Operating System is the same
one that supports the copy of BASIC/CMD found on
drive 0.
Again, please note that the copy of the BASIC/CMD file on drive 0 must
include the password "BASIC".

When the REMOVE module is finished, it will display this message:

REMOVAL COMPLETE

This is just to let you know that everything went according to plan.
Considerable error checking is done during the execution of the REMOVE
module. Any errors should be caught before the BASIC/CMD file on drive
0 is altered. If an error does occur, make a note of the message
displayed, correct the error, and try again.

BIONIC BASIC AND THE VARIOUS OPERATING SYSTEMS

All BIONIC BASIC modules and LIBRARY ROUTINES will operate in the
environment of a Model I TRS-80 with at least 1 disk drive, and which
uses one of the following Disk Operating Systems:

1. NEWDOS 80

2. NEWDOS 2.1

3. VTOS 4.0

4. TRSDOS 2.2

5. TRSDOS 2.3
Attempting to use any of the BIONIC BASIC modules with any other
operating system may have unpredictable consequences, although
hopefully, any such attempt will abort with this message:

TYPE OF DOS NOT RECOGNIZED

BIONIC BASIC CONVENTIONS
In an attempt to make the LIBRARY ROUTINES as easy to use as other BASIC
abilities, certain conventions have been adopted by the author. These
conventions involve the manner in which the LIBRARY ROUTINES are
invoked, and the manner in which needed information is passed to these
routines.

INVOCATION
LIBRARY ROUTINES are invoked in the following format:

CMD NAME , PARAMETER LIST

Essentially, this means that all BIONIC BASIC LIBRARY ROUTINES are
invoked by using the BASIC keyword CMD. When this keyword is
encountered by the BASIC interpreter, the interpreter will search for a
LIBRARY ROUTINE name immediately following CMD. If no such name is
found, the interpreter will assume that CMD is to be used in its

LINE

BIONIC BASIC -- PAGE 4

original sense, and it will then attempt to apply it in that fashion.
This means that BIONIC BASIC will not interfere with such uses of CMD as
CMD "T", or CMD "DIR", etc.

When CMD is followed by the name of any LIBRARY ROUTINE, that routine
will be executed, and the interpreter will then move on to its next
instruction. This makes it possible to use named LIBRARY ROUTINES in
the text of a BASIC program just as though they were legitimate
instructions. The 1outines may also be invoked by name from the
keyboard level of operatiom.

The PARAMETER LIST mentioned in the above format is always required,
even if it is empty. As an example, the LIBRARY ROUTINE named COMPRESS
may be invoked as:

CMD COMPRESS,

No parameters are needed, because the information this routine needs to
do its job is present at key addresses within the RAM that is used by
the ROM interpreter. Notice that the routine name has been followed by
a comma to indicate an empty parameter list.

On the other hand, the routine named SORT may have up to three
parameters in its parameter list. One sample command for this routine
is:

CMD SORT, AR(0), "UP", NDX(0)

Notice that each parameter uses a COMMA to separate it from its
neighbors. The documentation for each routine includes the requirements
for the parameter list of that routine.

NUMBERS AND ADDRESSES

Another convention adopted by BIONIC BASIC involves parameters that are
line numbers or memory addresses. Such integers must be witbin the
range of 0 thru 65535, instead of of -32768 thru 32767. Such integer
expressions are automatically adjusted to this range by BIONIC BASIC.
The user does not have to concern himself with whether or not a
particular expression is going to cross the boundary at 32767.

The LIBRARY ROUTINE named MOVE uses three such parameters. An example
of this command is:

CMD MOVE , 15360 , 64000 , 1024

This command will MOVE 1024 bytes of memory from 15360 (VIDEO RAM), to
64000 (Protected Merory). If the BIONIC BASIC integer conventions were
not in effect, the rumber 64000 would be misinterpreted as a single
precision number. FRIONIC BASIC will interpret any expression that
evaluates between 0 and 65535 as an integer, when such an expression is
being used as a memcry address, or as a line number.

Note: All spaces in BIONIC BASIC commands are optional.

BIONIC BASIC -- PAGE 5

BIONI(. BASIC LIBRARY ROUTINES AND FILES
The current collection of LIBRARY ROUTINES consists of the following:

1. FLASH Turn a flashing cursor on and off

2. REPEAT Turn a repeat-key function on and off
3. WHAT Display BIONIC BASIC routines

4. SORT Sorts any type of list

5. SEARCH Find (& replace) specified BASIC text
6. REDIM Redimensions one or more arrays

7. LOOKUP Find specific data within an array

8. = LABEL a routine in a BASIC program

9. GOTO Transfer to a LABEL or an expression
10. GOSUB Call a LABEL or an expression

11. RESTORE Restore to an expression

12, MOVE Move a block of memory

13. LINE Move a block of program lines
14, COMPRESS Remove needless spaces & all remarks
15. SHIFT Change the case of a specified string
16. RUN RUN, but save the variables
17. LOAD LOAD, but save the variables

More routines are scheduled for release in 198l.

These routines exist as relocatable machine language files. Use of the
word "relocatable" is not too precise in this application, since the
routines are only relocatable by the INSTALL module. Those files are

called:
1. FLASH Code for FLASH & REPEAT
2. WHAT Code for WHAT
3. SORT Code for SORT
4, SEARCH Code for SEARCH
5. REDIM Code for REDIM & LOOKUP
6. GOSUB Code for LABEL, GOTO, & GOSUB
7. RESTORE Code for RESTORE
8. MOVE Code for MOVE
9. LINE Code for LINE
10. COMPRESS Code for COMPRESS
11. SHIFT Code for SHIFT
12. LOAD Code for RUN & LOAD

It is important to know that these file names MUST NOT BE CHANGED. Any
exceptions to this rule will be noted in the documentation for the
routine involved. Some of the files contain more than one routine.
Such routines are all INSTALLED or REMOVED at the same time. The GOSUB
file is a good example. This file is installed by entering the command:

INSTALL GOSUB

This command will append the code for the LABEL, GOTO, and GOSUB
enhancements. After this code has been appended, the WHAT command will
display the presence of all three of these commands. If this command is
issued from DOS:

BIONIC BASIC —- PAGE 6
REMOVE GOSUB
All three routines will be removed.

While the GOSUB routine is a part of DISK BASIC, you might be tempted to
try a:

REMOVE GOTO

The REMOVE module will tell you that the routine has not yet been
installed, even though the WHAT command will tell you that it is there.
Multiple routines in a single file are installed and removed under the
name of the first routine in the file. The other routines are
accessible by the BASIC interpreter, but the REMOVE module will not
attempt to take ther out.

If you are using VICS 4.0, you should know that a BASIC/CMD file that
has been altered by BIONIC BASIC must not be used with the PATCH
utility.

GETTING STARTED -- PAGE 1

If this is your first time through the installation of a BIONIC BASIC
routine, you should realize that the following steps will permanently alter
the BASIC/CMD file that is on the SYSTEM diskette in drive 0. The BASIC/CMD
file is normally invisible, so you may not be aware of it. It is always a
good idea to work with a copy of the SYSTEM diskette first, and then do a
BACKUP if everything goes as it should. This will guarantee that you do not
lose valuable files. This is particularly true if you only have one drive.

If you only have one drive, use the LOADER on the Distribution Diskette to
bring the STARTER package on-line. If you have more than 1 drive, put a copy
of the Distribution Diskette into Drive 1. The first thing you must do is
verify that your SYSTEM diskette has 10 free GRANS. These GRANS will be
allocated to the BASIC/CMD file on Drive 0 as the BIONIC BASIC modules append
code to it. If you have used the LOADER and followed the imstructioms for
it, your SYSTEM diskette will have enough room on it.

Once you are sure that the SYSTEM diskette has enough space free, use the
FIREUP module to condition the BASIC/CMD file on your SYSTEM diskette. With
the DOS READY prompt showing, Type the word FIREUP and push ENTER. The
FIREUP module will load and run. When it is finished, it will display this
message:

STARTUP PACKAGE INSTALLED

The STARTUP package is a 200 byte appendage to the BASIC/CMD file which will
enable the ROM interpreter to find and execute the BIONIC BASIC LIBRARY

ROUTINES once they have been added. All by itself, this code does nothing
but use memory. One or more LIBRARY ROUTINES must be added before the
capabilities of the STARTUP package become useful.

Once the STARTUP package has been appended to the BASIC/CMD file on a
particular SYSTEM diskette, you may add any of the BIONIC BASIC LIBRARY FILES
to Disk Basic when that diskette (or a copy of it) is being used as the
SYSTEM diskette in Drive 0. You may also copy the altered BASIC/CMD file
over to a different SYSTEM diskette, and the same thing will still be true.
You must be certain that there is enough room on the diskette for any
additions that you intend to make.

Each LIBRARY FILE contains one or more of the LIBRARY ROUTINES of BIONIC
BASIC. One of the most useful of the LIBRARY FILES in the STARTER package is
named GOSUB. This file contains the machine language code that will enable
Disk Basic to use computed and labelled GOTOs and GOSUBs. To install these
capabilities, simply type:

INSTALL GOSUB

and hit ENTER. The INSTALL/CMD module will append the code in the GOSUB file
to the BASIC/CMD file on drive 0 so that the GOSUB capabilities will load and
execute with all of the other Disk Basic enhancements to Level II.

Another very handy LIBRARY FILE is the one named WHAT. This file contains
the code which will enable you to request a display of the currently

GETTING STARTED -- PAGE 2

installed BIONIC BASIC LIBRARY ROUTINES. This file is installed by the
command :

INSTALL WHAT
When the INSTALL module comes back with the message:
INSTALLATION COMPLETE

Type BASIC and hit ENTER. When you get to Disk Basic, notice the new banner
that is on the display. This message is displayed to indicate that you are
using a copy of BASIC/CMD that includes the STARTUP package of BIONIC BASIC.

While you are in Disk Basic, ENTER this command:
CMD WHAT,

You will see the BIONIC BASIC LIBRARY ROUTINES that you have just installed.
Notice that there are more LIBRARY ROUTINES installed than there are LIBRARY
FILES. Some LIBRARY FILES contain more than one routine. The GOSUB file
contains 3.

ENTER a CMD "S" to return to DOS READY.

Each of the other LIBRARY FILES that are part of the STARTER package may now
be added to the BASIC/CMD file on Drive 0 by using the INSTALL module. These
files are named:

LOAD
RESTORE
MOVE
SHIFT
FLASH

When you have installed all of these files, enter Disk Basic, and RUN the
DEMO program that is part of the STARTER package. The DEMO will show you a
use for each of the LIBRARY ROUTINES.

The LIBRARY ROUTINES that have been appended to Disk Basic by the INSTALL
module can be taken out of the BASIC/CMD file by using the REMOVE module. To

try this out, return to DOS READY after you are finished with the DEMO
program by entering a CMD "S". Then ENTER this command:

REMOVE GOSUB

When the REMOVE module comes back with the message:

REMOVAL COMPLETE

Reenter Disk Basic, and try to RUN the DEMO program. You will find that it

will not RUN, since the DEMO program was written using computed and labelled
GOTOs and GOSUBs.

CETTING STARTED -— PAGE 3
Return to DOS READY and ENTER the cemmand:
INSTALL GOSUB

The GOSUB file will be put back imnte the BASIC/EGMD file. When yeu get inte
Disk Basie and use the WHAT command, you will see that the LIBRARY ROUTINES
in the GOSUB file are displayed at a different locatien. The INSTALL medule
relocates the LIBRARY FILES to fit inte memery at the current emd of the
memory space used by the BASIC/CMD file, Rempvlag the GOSUB file apd then
reinstelling it caused it te be lecated in g d;ffgregt gegment af HEMOTY .

Now that you have ap existing cepy eof the BASIC/CMDP file whieh has been
modified to imclude the BIONIC BASIC LIBRARY ROUTINES, yeu may eopy this file
onto other diskettes so that yeu cap use the LIBRARY RGUT1H§§ that yeu have
irstalled. Remember that the BASIC/EMP file has been expanded teo 1ﬂsiué§
these routines. Before you try to meve this file gnte anether diskette, b
certain that there is rocm feor it. The REMOVE apd INSTALL moedules will we;k
or any copy of the BASIC/CMD file that includes the BTARTUP package:

STARTER LIBRARY —- PAGE 1

FILENAME GOSUB INSTALL GOSUB REMOVE GOSUB

COMMAND FORMATS
CMD = , "NAME OF ROUTINE"
CMD GOSUB , DESTINATION
CMD GOTO , DESTINATION
All three of these routines are contained in the file named GOSUB.

PARAMETER DISCUSSION
CMD = , may be used as a LABEL inside of a BASIC program to mark
the beginning of a named routine. The "NAME OF ROUTINE" parameter
must always be a literal string. No variables can be used here.

When CMD = , is encountered by the BASIC interpreter, the
interpreter simply moves ahead to the next instruction, effectively
ignoring the label. The label is not supposed to execute. It is
just supposed to tag the beginning of a particular block of code
within a BASIC program for access by the GOTO and GOSUB commands.

The DESTINATION parameter for the GOSUB and GOTO commands may be
any type of expression. If it is numeric, the line number it
represents will be located, and program execution will continue at
the first statement on that line. If it is a string, the LABEL
routine will search the program line by line for the first line
that contains a label that matches the string. Execution will
continue at the first statement past the matching label.

If the DESTINATION is not found, an error results.
EXAMPLES OF LABELLED/COMPUTED GOTO & GOSUB N

10 CMD GOSUB , RND(5) + 19 : PRINT AS$: GOTO 10

20 A$ = "LINE 20" : RETURN
21 A$ = "LINE 21" : RETURN
22 A$ = "LINE 22" : RETURN
23 A$ = "LINE 23" : RETURN

24 AS = "LINE 24" : RETURN
This is an illustration of the computed GOSUB. It will output
random line numbers between 20 and 24.

10 CMD GOSUB , "MESSAGE" : STOP
20 CMD =, "MESSAGE" : PRINT "BIG DEAL" : RETURN

This example will print "BIG DEAL", and then stop.

10 I =0 : CMD =, "TRICK" : I =1+ 1 : PRINTTI :

CMD GOTO , “TRICK"
This one-liner will print the numbers 1 thru N, where N is some
measure of the operators patience. It is included to demonstrate
the fact that labels may be used at any point in a program,
including the middle of a line.

STARTER LIBRARY —-- PAGE 2

10 A$ = "EXIT"

20 CMD GOTO , AS

30 CMD =, "EXIT" : PRINT "THAT'S ALL FOLKS" : END

This illustrates the fact that labels may be ACCESSED using string
variables. They may not be DEFINED by string variables.

FILENAME SHIFT INSTALL SHIFT REMOVE SHIFT

COMMAND FORMAT
CMD SHIFT,STRING1,STRING2

PARAMETER DISCUSSION
This command can be used to alter the case of alphabetic characters
in STRINGl, which may be any literal or variable string. STRING2
is optional. If it is used, it must be a string that begins with
"U" (for UPPER case), "L" (for LOWER case), or "S" (for SWITCH
case).

EXAMPLES OF THE SHIFT COMMAND
CMD SHIFT , AS$, "U“
This command will guarantee that every alphabetic character in A$
is upper case.

CMD SHIFT , A$, "L"
This command will guarantee that every alphabetic character in A$
is lower case.

CMD SHIFT , AS$, “sg"
This command will switch lower case letters to upper case, and
upper case letters to lower case.

CMD SHIFT , AS
This command is equivalent to example 1.

FILENAME LOAD INSTALL LOAD REMOVE LOAD

COMMAND FORMATS
CMD LOAD , OPTIONl , VARIABLE LIST
CMD RUN , OPTIONl , VARIABLE LIST, OPTION2
Both routines are contained within the library file named LOAD.

PARAMETER DISCUSSION
The LOAD command is used to LOAD a BASIC program into memory from a
disk file without changing the variable list that is already in
memory, or without losing specified variables. "“FILENAME" must be
the filename of a BASIC program in standard format. The quotes
must be included.

OPTIONl may be any literal number. If such a number is found
immediately following the "FILENAME", that amount of string storage
space will be reserved after the new program is loaded. If OPTIONIL

STARTER LIBRARY -- PAGE 3

is not used, the amount of string storage space will not be changed
from its current value.

The VARIABLE LIST may be ! or more variable names separated by
commas. Such a list is called an "explicit" variable list. This
is an example of an explicit variable list

vi, v2, V3, V4
Any variable name may be used in an explicit variable list. See
example 4 for restrictions on this type of list.

The VARIABLE LIST may consist of a the "*" symbol. This symbol is
used in place of an explicit list to indicate that all variables
are to be saved. This type of list is called an "implicit"
variable list.

OPTION2 may be any line number of PROGRAM2. When OPTION2 is
included in the parameter list of CMD RUN, PROGRAM2 will begin its
RUN at this line.

EXAMPLES OF CMD LOAD
CMD LOAD, "PROGRAM2", *
This example will LOAD the program named PROGRAM2 without changing
any of the current variables, or altering the amount of string
space that has already been reserved.

CMD LOAD, "PROGRAM2", 1000, *

This example will LOAD PROGRAM2? without changing any of the current
variables. After the program is loaded, 1000 bytes of memory will
be reserved for string storage.

CMD LOAD, "PROGRAM2", I, J, K, L

This example will save the variables named I, J, K, and L, and LOAD
the program named "PROGRAM2". PROGRAM2 will have the same amount
of string space reserved that the original program had.

CMD LOAD, "PROGRAM2", I, J, Al1(0), A2(0,0), A3(0,0,0)
This example will save the scalar variables named I and J, along
with the ARRAY variables named Al, A2, and A3 before loading
PROGRAM2. There are two things you should notice about this
. example.

1. SCALARS MUST PRECEDE ARRAY VARIABLES

2. ARRAYS MUST USE ALL ZERO SUBSCRIPTS
If a scalar variable is found after any array has been listed, a
TYPE MISMATCH error will occur. If an array is named that does not
use the zero subscript, a SUBSCRIPT OUT OF RANGE error will occur.

EXAMPLES OF CMD RUN
CMD RUN , "PROGRAM2" , *
This command will save the variables from PROGRAMl, load PROGRAM2
into memory, put back the PROGRAMl variables, and them begin
execution of PROGRAM2 at its very first line.

CMD RUN , "PROGRAM2" , * , 100

1.
2.

STARTER LIBRARY -- PAGE 4

This example is identical to the first example, except that OPTION2Z
has been used to cause PROGRAM2 to begin executing at the start of
line number 100.

CMD RUN , "PROGRAM2" , AS , ARRAY(0)

This command will save the pointers for AS$, and the contents of
ARRAY, load PROGRAM2Z into memory, and begin execution of PROGRAM2
at the first line.

CMD RUN , "PROGRAM2" , A$, ARRAY(0) , 100
This command is identical to example 3, except that OPTION2 has
been used to cause PROGRAM2 to begin execution at line number 100.

CMD RUN , "PROGRAM2" , 2000 , *
This command is identical to example 1, except that PROGRAM2? will
begin to RUN with 2000 bytes of memory reserved for string storage.

CMD RUN , "PROGRAM2" , 100 , X , Y , Z

This command will save the variables named X, Y, and Z, load
PROGRAM2 into memory, put back the variables X, Y, and Z; reserve
100 bytes of memory for string storage, and begin executing
PROGRAM2? at its very first line.

CMD RUN , "PROGRAM2" , 1000 , X , Y , Z , 100
This command is identical to example 6, except that OPTION2 has
been used to ferce PROGRAM2 to begin execution at line number 100.

THINGS TO KNOW ABOUT LOAD & RUN

(1) String variables passed by the LOAD (or RUN) command may not
come through with their content preserved if the amount of string
space reserved for PROGRAM2 is smaller than the amount reserved by
PROGRAMl. Strings inside of file buffers are not affected by CMD
LOAD or CMD RUN.

(2) Strings that have been assigned to text within PROGRAM] will
not be valid ir PROGRAM2. There are 2 kinds of strings like this

READ AS (assignment from DATA statements)
A$ = "JOHN JONES" (literal assignments)

PROGRAM2 will probably overwrite the memory used by the text of
these strings. FEven though the string pointers are preserved, the
content of the strings will not be predictable. Either or both of
the example strings could be guaranteed by using

A$ = LEFT$(A$,255)
in PROGRAMl before PROGRAM2 is requested.

(3) User-defined functions (DEF FN or DEF USR) will never carry
over from one program to another. Such functions must be redefined
in each program.

(4) The variable typing table established by the use of DEFINT,
DEFSNG, DEFDBL, or DEFSTR is carried over from one program to the
next. This may cause a lot of "TYPE MISMATCH" errors if it is

STARTER LIBRARY -- PAGE 5
forgotten.

(5) OPEN files in PROGRAM] will remain OPEN to PROGRAM2. BIONIC
BASIC LOAD and RUN will not CLOSE files.

(6) Any error encountered during the physical LOAD of PROGRAM2 by
DOS is a fatal error. BASIC program text is erased from memory
before the error is reported. This should never be anything but an
OUT OF MEMORY error, although other errors are possible.

(7) If no VARIABLE LIST is found, a MISSING OPERAND error will be
generated. These commands should not be used in place of the
normal LOAD and RUN commands.

(8) All scalar (non-array) variables must be named in an explicit
variable list before any array is named. Listing a scalar after
the first array has been listed will cause a TYPE MISMATCH error.

(9) Array variables named in an explicit list must include zero
subscripts. Non-zero subscripts will cause a SUBSCRIPT OUT OF
RANGE error.

FILENAME WHAT INSTALL WHAT REMOVE WHAT

COMMAND FORMAT
CMD WHAT,D

PARAMETER DISCUSSION
This command will clear the screen and display the names of those
BIONIC BASIC rcutines that are presently available. The "D"
parameter is nct needed, but the comma after the WHAT is.

FILENAME RESTORE INSTALL RESTORE REMOVE RESTORE

COMMAND FORMAT
CMD RESTORE , LINE NUMBER

PARAMETER DISCUSSION
The "LINE NUMBER" parameter may be any NUMERIC EXPRESSION. If the
integer part of the expression is not an existing line number, an
UNDEFINED LINE # error will result. This command allows the
programmer the option of placing the internal DATA pointer at any
existing line number. This is a very powerful capability for games
programs and self-contained databases.

EXAMPLES OF CMD RESTORE
CMD RESTORE , 100
The DATA pointer will be restored to the beginning of line 100. If
line 100 does not exist, an error will be generated.

CMD RESTORE , X

STARTER LIBRARY -- PAGE 6

The DATA pointer will be restored to the line with a number that is
equal to the integer part of the number contained in the variable

named "X". 1If no such line exists, an error will be generated.

CMD RESTORE , X/5 + 2 _

The DATA pointer will be restored to the line with a number equal
to the integer part of the expression "X/5 + 2". 1If no such line
exists, an error will be generated.

FILENAME MOVE INSTALL MOVE REMOVE MOVE

COMMAND FORMAT
CMD MOVE , FROM , TO , LENGTH

PARAMETER DISCUSSION
All three parameters are required. The FROM parameter is the
address of the first byte to be MOVEd by the command, and the TO
parameter is the address to which it is MOVEd. The LENGTH
parameter specifies how many bytes are to be MOVEd. All three
parameters may be any numeric expression that the BASIC interpreter
can evaluate. The MOVE command uses the LDIR and LDDR instructions
of the Z-80. It can relocate 10,000 bytes of memory in less than
20 milliseconds.

This command has a variety of uses. It can be used to scroll any
part of the screen, save the contents of the video display in
protected memory, or to save variable contents in protected memory
while one program is being replaced with another. This one-line

program will scroll the eighth through the twelfth lines of the
video display :

1000 CMD MOVE,15808,16128,64:
CMD MOVE,15872,15808,320

The thirteenth line is used as a buffer for line 8. An arbitrary
string could be used almost as easily.

FILENAME FLASH INSTALL FLASH REMOVE FLASH

COMMAND FORMAT
CMD FLASH , OFF/ON , OPTION
CMD REPEAT , OFF/ON , OPTION

Both of these enhancements are contained in the library file named
FLASH.

PARAMETER DISCUSSION

The OFF/ON parameter may be any variable or literal string that is
equal to one of the two words OFF or ON.

When the OPTION is used with the FLASH command, it determines the
character that is flashed on and off. This parameter defaults to a

STARTER LIBRARY ~- PAGE 7

small graphics block. If the OPTION given is a string expression,
then the first character of that string will be FLASHed. If the
OPTION is numeric, then CHRS(OPTION) will be FLASHed. The
alternating character for the FLASH command will always be the
regular underscore cursor. If OPTION=128, then the underscore will
blink on and off.

When the OPTION is used with the REPEAT command, it must be a
numeric expression. The value of this expression will determine
the speed with which a key that is being held down will be accepted
as new input. The default value for this parameter is 4000. Any
value between 0 and 65535 will be accepted.

Once the OPTION parameter has been used with either the FLASH or
REPEAT commands, the default value becomes the OPTION.

EXAMPLES OF FLASH & REPEAT
CMD FLASH , "ON" , '"#"
This will cause the pound sign to alternate with the underscore
cursor.

CMD FLASH, "OFF"
This will turn the flashing cursor off

CMD FLASH , "ON" , 128

This will cause the underscore cursor to alternate with a graphics
blank. Effectively, it will cause the underscore to blink on and
off. This is an unobtrusive blinking cursor.

CMD REPEAT , "ON"
This turns on the repeat key function with the default value for
repetition rate.

CMD REPEAT , "OFF"
This turns off the repeat key function

CMD REPEAT , "ON" , 1
This turns on the repeat key function, and sets the repetition at
the fastest possible rate.

BASIC DEMONSTRATION ~- PAGE 1

DEMO

The DEMO program is a BASIC program containing subroutines that illustrate
most of the currently available library routines. As more routines are added
to the library, the programs that demonstrate them will be written to MERGE
with this DEMO. Study of these routines should be sufficient to clarify the
documentation.

The user must INSTALL both the WHAT and the GOSUB library routines, before
the DEMO program will RUN. DEMO uses CMD WHAT to find out which routines
have been installed. The CMD GOSUB routine is used by DEMO in almost every
subroutine call that it makes.

Several of the subroutines in this program use the STOP command to halt
program execution. This causes the ROM interpreter to come back to READY
with this message:

BREAK IN LINE XXX
READY

XXX represents the line number in which the STOP command was encountered.
Any time that you see this "BREAK" message, you can resume execution of the
DEMO program by entering the command:

CONT

DEMO uses the STOP command to give the operator a chance to list program
lines for study.

If the program ceases execution without printing the "BREAK" message, the
operator must enter a GOTO or a RUN command in order to resume execution of
the DEMO program. In the original DEMO program, this happens when CMD WHAT
is used to display the names of currently installed routines, and when CMD
COMPRESS is called upon to execute. To recover from the halt caused by CMD
WHAT, enter a:

RUN 100

It is not possible to recover from the halt caused by CMD COMPRESS. This
routine automatically does a CLEAR, so DEMO must be RUN again in order to

reinitialize its variables.

The DEMO program may be compressed, but it may not be renumbered. Computed
GOSUBs are demonstrated by this program using assigned line numbers. If you
change the line numbers, the computed GOSUBs will be off.

The routine that is used to demonstrate the LOAD and RUN commands will move
the DEMO program out of and back into memory while preserving its variables.
DO NOT use any command while DEMO2 is resident that will alter the variable
table.

DEFINITIONS —-- PAGE 1

SYSTEM DISKETTE:

A SYSTEM diskette is one that is programmed to work when it is used in drive
0. The programming on such diskettes includes the Disk Operating System that
is necessary before diskette files can be accessed. SYSTEM diskettes used by
BIONIC BASIC must include a copy of the BASIC/CMD.BASIC file that is standard
with every operating system recognized by BIONIC BASIC.

DISTRIBUTION DISKETTE:
This is the diskette that you purchased. It contains the BIONIC BASIC
library files and/or modules.

EXPRESSION:
An expression is a string of ASCII symbols that can be evaluated by the
INTERPRETER as a unique number or string.

FILE:
Information that has been stored on a diskette by name is called a
"file". Files may store any kind of information.

ON-LINE:
Any file that is on a diskette in a currently active disk drive is said
to be "on-line". This means that the Disk Operating System can access
the file.

MODULE:

A module is a BIONIC BASIC file that contains a functional machine
language program designed to alter the BASIC/CMD.BASIC file on drive O.

LIBRARY ROUTINE:
A library routine is any one of the enhancements to DISK BASIC that 1is
implemented by BIONIC BASIC.

LIBRARY FILE:
Any file on a DISTRIBUTION diskette that does not include the '"/CMD"
extension is a LIBRARY FILE. Such files contain one or more of the
LIBRARY ROUTINES.

SUBSCRIPT:
Each dimension of an array is called a SUBSCRIPT. An array that is
dimensioned as ARRAY(23) has only 1 SUBSCRIPT. That SUBSCRIPT may be

any number between 0 and 23, inclusive. Similarly, an array that is
dimensioned as ARRAY(X,Y,Z) has 3 SUBSCRIPTS.

LIST:
A LIST is an array that uses only one SUBSCRIPT.

SUBLIST:
A SUBLIST is a part of a multi-dimensional array. A SUBLIST is defined

when one SUBSCRIPT is unknown, and all others are valid numeric
EXPRESSIONS.

DEFINITIONS -- PAGE 2

INDEX:
An INDEX is a specific integer value for some SUBSCRIPT of an array.

MARKER:
A symbol that is used to indicate which SUBSCRIPT of an array is
unknown.

ROM:
An acronym for Read Only Memory. Level II BASIC is stored in 2 or 3 ROM
chips.

RAM:

An acronym for Random Access Memory. A more accurate acronym might be
RAW (for Read And Write). The Disk Operating System, Disk Basic, BIONIC
BASIC, and all BASIC programs are stored in RAM.

INTERPRETER:
Instructions to the computer that are written in BASIC must be
translated into machine language. A large segment of ROM contains a
machine language program that performs this task. That program is
called an INTERPRETER.

LOADER:
A special program that is loaded into RAM whenever the Distribution
Diskette is booted up in Drive 0. The LOADER will transfer the files on
the Distribution Diskette onto a SYSTEM diskette.

INVOKE:
When a program (or LIBRARY ROUTINE) is made to execute, it is said to be
INVOKED.

PARAMETER:
When a LIBRARY ROUTINE is invoked, it may require one or more items of

information before it can properly execute. Those items are referred to
as PARAMETERS.

EDITING PACKAGE -- PAGE 1

FILENAME SEARCH INSTALL SEARCH REMOVE SEARCH

BASIC TOKENS

WHAT

Some of the discussion of this command assumes an understanding on
the part of the reader of the concept of TOKENS. A token is a one
byte representation of an entire LEVEL II BASIC keyword. A list of
these keywords is found in the LEVEL II BASIC reference manual on
page A/15. Each of these keywords is associated with a single-byte
token. When a command is issued from the command mode of BASIC, or
when a line of BASIC program is entered, the text of the entry is
searched for BASIC keywords by the BASIC interpreter, and every
occurrence of a keyword is replaced by that keyword's token.

All BASIC programs are stored in memory with keywords in their
tokenized form. When the operator calls for a LISTing of the
program, the tokens are recognized by the interpreter, and
displayed in their expanded format as a keyword. When a BASIC
program is saved to disk by a: SAVE "FILENAME": command, the body
of the BASIC program is SAVEd with the keywords in their tokenized
form in order to conserve disk space. Issuing the command to: SAVE
"FILENAME",A: causes the interpreter to recognize tokens, and save
them as the ASCII text of the keyword instead of as tokens. When
such a file is called back into memory from the disk, the keywords
are tokenized before they are stored.

DOES SEARCH DO 77

The SEARCH command is an extension of the EDITing capabilities
already written into the BASIC language. This command will enable
you to SEARCH any BASIC program resident in RAM for a string, and
to replace it with some other string. Because there are no
restrictions on the strings that may be used for replacement, it is
possible for this command to create BASIC program lines that are
too long for the BASIC monitor to save or run. Replacements should
be chosen with that thought in mind. When no replacement is made,
or when the replacement string is exactly the same length as the
object string, the exit from the routine is the same as for any
other BASIC command. Under such circumstances, this command may be
used inside of a program. If a replacement is called for that is
different in length from the object string, the routine will exit
to the BASIC ready prompt.

Since the variable names used in a program consist of ASCII
strings, it is possible for this command to do a global SEARCH &
replace of any variable name with any other. It is also possible
to find and replace any specified BASIC token with any other, such
as changing all PRINT statements to LPRINT. The range of the
SEARCH is specified by an upper and lower line number limit. The
command searches program text from the lower limit through the
upper limit for all occurrences of the object string, and does a
replacement of that string if anything appears in the replacement
option. Strings that contain a ":" are difficult to find and to

EDITING PACKAGE -- PAGE 2
replace.

COMMAND FORMAT
CMD SEARCH, LOWER, UPPER, OBJECT, REPLACEMENT

PARAMETER DISCUSSION
The LOWER and UPPER parameters are numeric. The other two must be
literal strings. Either one or both of the numeric parameters may
be omitted, although the commas used to separate them must always
be present. If no replacement is listed, then the command will
simply display the line numbers of each line that contains the
object string. Any line containing that string more than once will
be printed that many times. Please note that placing a comma after
the object string is sufficient for the command to assume that a
replacement string 1s intended, but that the replacement is blank.
This means that placing a comma after the object string will cause
the command to delete the object string every time it is located.

In order to accomodate the possibility of locating and changing
BASIC key words, it is not always mandatory to use quotes around
the strings in this command. The BASIC monitor reduces all
unquoted BASIC key words to one byte tokens before it executes the
SEARCH command. As a result of this fact, it is important to bear
in mind what you are looking for before you call for a SEARCH. If
what you are looking for is on the list of BASIC key words in the
LEVEI II manual, then it must be entered without quotes.
Similarly, if you want to replace a string with a key word on the
list, then the replacement string should not be quoted. Any other
string used as the object or replacement string should be quoted.
The BASIC decoding scheme also makes it difficult to replace the
DATA and REM tokens with anything other than a literal string.

The UPPER and LOWER parameters may be used to restrict the SEARCH
command to a particular segment of the resident program. If the
LOWER limit is used, then the SEARCH will begin at the first line
of the program with a line number equal to or greater than the
LOWER parameter. If it is not used, then the SEARCH defaults to
the beginning of the program. The UPPER limit may be any number
greater than or equal to the LOWER limit. If the UPPER and LOWER
limits are equal, then just that ome line is SEARCHed. If the
UPPER limit is less than the LOWER limit, then no SEARCH is
executed. If no UPPER limit is specified, then the program is
SEARCHed from the LOWER limit through to the end of program text.

The SEARCH command will display the line number of every line that
contains a match to the object string. This output may be
suppressed completely, or routed to a line printer. The command
CMD SEARCH,'"OFF"

will disable all output by this routine. CMD SEARCH,"ON" will
restore the display capabilities. The display can be routed to the
line printer by: CMD SEARCH,"ON",L. Either of the following
commands will route the display to the video:

CMD SEARCH,"ON",D

EDITING PACKAGE —- PAGE 3

CMD SEARCH,"OFF",D
The display switch has been provided to make it possible to use

this command inside a program without getting strange output on the
screen.

The routine was designed for use in EDITing resident BASIC
programs. The programmer may use the routine to locate specific
strings. Once found, the strings may be replaced by the routine,
or by using the EDIT commands of the computer. Here are some
examples of how this routine may be used in EDITing a program. The
examples assume that the routine has been initialized with a-—-CMD
SEARCH,"ON",D---so0 that output from SEARCH will go to the video
display.

EXAMPLES OF COMMAND SEARCH
EXAMPLE (1) CMD SEARCH,,,"AS$"
This command will SEARCH the entire program, and display the line
number of each line that contains any string equal to A$. Please

note that the routine will report the variable RA$ as an occurrence
of AS.

EXAMPLE (2) CMD SEARCH,100,1000,"A$"
This command will do exactly the same thing as example (1), except
that the routine will not begin its SEARCH until it finds the first
line number greater than or equal to 100. The SEARCH will cease

the first time the routine encounters a line number greater than
1000.

EXAMPLE (3) CMD SEARCH,100,,"A$"
This command is identical to EXAMPLE (2) except that program text
will be SEARCHed from line number 100 through to the end of the
program.

EXAMPLE (4) CMD SEARCH,,1000,"A$"
This command is identical to EXAMPLE (1) except that the SEARCH
will be made from the first line number (as long as it is less than
1000) on up to line number 1000.

EXAMPLE (5) CMD SEARCH,,,REM
This command will SEARCH the entire program, and display the line
numbers of every line that contains a REMark.

EXAMPLE (6) CMD SEARCH,,,"REM"
This command will SEARCH the entire program, and display the line
numbers of every line that contains the ASCII characters "REM".

EXAMPLE (7) CMD SEARCH,,,"AS$","Al$"
This command is identical to EXAMPLE (1) except that every time the
routine locates A$, it will replace it with AlS§.

EXAMPLE (8) CMD SEARCH,,,"AS",
This command is identical to EXAMPLE (1) except every occurrence of
AS$ will be deleted from the program. Please note that the only

EDITING PACKAGE -- PAGE 4

difference between this command and the ome given in EXAMPLE (1) is
the comma after the AS.

EXAMPLE (9) CMD SEARCH,,,"A$",""
This command is identical to EXAMPLE (8).

EXAMPLE (10) CMD SEARCH,,,DATA,REM
This command appears to be a way to change DATA statements to
REMarks. It will not work as intended. The BASIC interpreter sees
every character in this command beyond the keyword DATA as part of
a DATA statement. This means that every character is interpreted
literally, so that the keyword REM will not be tokenized. The
result of this command will replace every token of the keyword DATA
with the literal string "REM".

In order to accomplish the replacement of the DATA token with the

REM token it would be necessary to do a 2-part replacement like so:
CMD SEARCH,,,DATA,"XYZ" : CMD SEARCH,,,"XYZ",REM

This discussion should make it clear that no keyword in a

replacement will be correctly tokenized if it follows either of the

two keywords REM or DATA.

FILENAME COMPRESS INSTALL COMPRESS REMOVE COMPRESS

COMMAND FORMAT
CMD COMPRESS , OPTION

PARAMETER DISCUSSION
The optional parameter of this command serves no useful purpose.
It is only there because the comma after the word COMPRESS 1is
mandatory. This command exits to the READY mode, and should only
be used as a KFYBOARD command, in the same way that EDIT is used as
a KEYBOARD command. Once a program has been COMPRESSed, it may be
SAVEd, LOADed, and RUN as usual. On large programs, this command
may save thousands of bytes of memory.

FILENAME LINE INSTALL LINE REMOVE LINE

COMMAND FORMAT
CMD LINE, SOURCE : DESTINATION : INCREMENT : FLAG
Notice that the terminators between parameters of this command are
colons, except for the comma between the name "LINE", and the
parameter which specifies the SOURCE for the move.

PARAMETER DISCUSSION
The "SOURCE" parameter specifies the block of lines that is to be
moved. If L1 & L2 are 2 different line numbers, then the SOURCE
parameter may take on either of these formats:
Ll
Ll - L2
The first format of the SOURCE parameter will cause only the omne

EDITING PACKAGE —- PAGE 5

line numbered L1 to be moved. The second will move the block of
lines between and including L1 & LZ. Any line number used in the
SOURCE parameter must be an EXISTING LINE NUMBER, or no move will
occur. :

The DESTINATION parameter specifies the first new line number that
will be used by the lines being moved from the SOURCE. Only one
line number is needed here. It MUST NOT BE AN EXISTING LINE
NUMBER. If it exists, an error will be generated that reads:
OVERFLOW INTO EXISTING LINE #
CAN'T CONTINUE
and the move will be aborted.

The "INCREMENT" parameter is used to specify the increment between
line numbers at the DESTINATION whenever more than one line is
moved from the SOURCE. This parameter is optiomal. It will
default to 5 if not specified. Whenever more than one line is to
be moved, the LINE routine inspects the resident program for any
line number that is less than or equal to the largest line number
that will result from adding the INCREMENT to the DESTINATION line
number for the number of lines that are being moved. If such a
line does exist, then the error message above will be displayed,
and the move will be aborted.

The "FLAG" parameter has one possibility, which is the letter "D",
without quotes. When a D appears in this position, the LINE
routine will delete the original lines after moving them to their
new location. Otherwise, they are not changed.

VALID POSSIBILITIES FOR THE "LINE" COMMAND
If L1, L2, and L3 are three different line numbers, then the
following are valid commands:
CMD LINE, L1 : L2
Will duplicate L1 at L2. Ll will still exist.

CMD LINE, L1 : 12 : D
Will move L1 to L2 and delete Ll.

CMD LINE, L1-12 : L3
Will move lines L1 thru L2 into the line numbers that begin with L3 and
INCREMENT in the default steps of 5.

CMD LINE, L1-12 : L3 : D
This does exactly the same thing as the previous example, except that
lines L1 thru L2 are deleted after they are moved.

CMD LINE, L1-L2 : L3 : 1
Will move lines L1 thru L2 into the line numbers that begin with L3 and go
up in steps of 1.

CMD LINE, L1-L2 : L3 : 1 : D
Will do exactly the same thing as the previous example, except that the
SOURCE lines will be deleted. Notice that the INCREMENT parameter

EDITING PACKAGE -- PAGE 6

~precedes the deletion FLAG.

UNLIKE OTHER BIONIC BASIC ROUTINES THAT ARE LINE NUMBER ORIENTED, THIS
ROUTINE REQUIRES LITERAL LINE NUMBERS SUCH AS 10, 123, 1014, ETC.
VARIABLES AND EXPRESSIONS MUST NOT BE USED.

ARRAY LIBRARY ~-- PAGE 1

FILENAME SORT INSTALL SORT REMOVE SORT

COMMAND FORMAT

CMD SORT , ARRAY , DIRECTION , INDEX

PARAMETER DISCUSSION

The SORT command may be used to put the elements of the ARRAY
parameter into ascending or descending order. The ARRAY parameter
may be the zero index of any array with a single SUBSCRIPT. An
array with a single SUBSCRIPT is called a "list". This SORT works
on lists of any length, and of any data type, including strings,
integers, single precision numbers, and double precision numbers.
The SORT is fast enough to invert a list of 1000 single precision
numbere in about 5 seconds. It will order a randomly generated
list of 3000 single precision numbers in about 2 minutes.

DIRECTION is used to determine whether the SORT is ascending or
descending. This parameter may be any literal or variable string
that begins with the letter "U" (for UP) or "D" (for DOWN). .
Specifying "U" as the direction will cause an ascending SORT, and
"D" will cause a descending SORT. The direction must be included
in any SORT command that uses the index option, but it may

otherwise be omitted, in which case the default SORT will be
ascending.

The INDEX parameter is optional. When it is used, the SORT command
requires that it be the zero index of a list that is the same size
as the list specified by ARRAY. The INDEX list must be a list of
integers. This list is supposed to contain the original location
of each entry in the ARRAY. If ARRAY consists of names drawn from
a disk file, then INDEX would consist of the record numbers from
that file, so that the name in ARRAY(N) came from record number
INDEX(N). When the INDEX option is used, the INDEX array will stay
in correspondence with ARRAY. If INDEX is used, and the INDEX
array is not a list of integers, an error will be generated.

Here are the valid SORT commands:

CMD SORT,AR(0)

CMD SORT,AR(0),"UP"

CMD SORT,AR(0),"DOWN"

CMD SORT,AR(0),"UP",NDX(0)
CMD SORT,AR(0),"DOWN",NDX(0)

Note that all array names specify the zero index.

10
20
30

40
50
60
70

ARRAY LIBRARY ~- PAGE 2

EXAMPLE OF INDEXING
In order to see what the indexing option does, try the following
program:
CLS: CLEAR 50: DEFINT A-Z: DM = 12
DIM CURRENT(DM),OLD(DM),INDEX(DM)
FOR I=0 TO DM:
CURRENT(I)=RND(10000):
OLD(I)=CURRENT(I):

INDEX(I)=1:
NEXT
CMD SORT,CURRENT(O),"DOWN",INDEX
PRINT "POSITION VALUE PREVIOUS POSITION"
FM$ = "##### ##$4 FEERET

FOR I=0 TO DM:

PRINT USING FM$; I, CURRENT(I),INDEX(I):
NEXT

This program creates a random list of integers that are duplicated
in an old list. The index of each element is stored in an index
array. Notice that line 10 defines all variables as integers, so
that the index array is an integer array. When the array is sorted
with the index option on the index array, it returns with the data
in the current array in order, and the data in the index array
pointing to the original location of the current data. This can be
seen by running this line from the command mode after the program
has finished:

FOR I=0 TO DM: PRINT OLD(INDEX(I));: NEXT

The results of this line will be in the same order as the center
column of the program output.

A NIFTY LITTLE DITTY

This SORT is implemented in such a fashion that when sorting
alphanumeric lists (such as a list of names), the SORT will place
all zero length strings at the tail of the list, whether the SORT
is ascending or descending. This provides the user a simple test
to determine when significant data ends. The first occurrence of
zero length string in a list will mean that all elements of the
list beyond that point are also zero length strings.

ARRAY LIBRARY -- PAGE 3
FILENAME REDIM INSTALL REDIM REMOVE REDIM

COMMAND FORMATS
CMD REDIM , ARRAY LIST
CMD LOOKUP , SUBLIST , DATA , INDEX

THE LOOKUP COMMAND
The LOOKUP command is used to find a match to specified data within
an array. This command will search the SUBLIST specified by the
first parameter for the DATA contained within the second parameter.
If the DATA is found, then the index of that DATA within the
SUBLIST will be returned within the variable that is used as the
INDEX parameter. If the DATA is not found, a -1 will be returned
in the INDEX variable.

The "SUBLIST" can be any SUBLIST of an existing array. see the
examples below to find out how a SUBLIST is specified.

The "DATA" can be any EXPRESSION, variable, or literal string.
This parameter defines the DATA that the command is trying to look
up.

The "INDEX" can be any single numeric variable. The results of the

LOOKUP command are stored in this variable for later access by the
user.

ONE QUICK NOTE
The following examples of the LOOKUP command all sound as though
the zero index does not exist. This was done for the sake of
simplicity. Zero indices are fully supported.

LOOKUP EXAMPLE 1

The simplest use for the LOOKUP command can be illustrated by
assuming a list of 100 names that is held in an array that was
dimensioned as NM$(100). If the operator has entered the name
"JOHN JONES" into the variable A$, the LOOKUP command can be used
to quickly determine whether or not the name "JOHN JONES" is in the
list by issuing the command:

CMD LOOKUP, NM$(#), AS, INDEX
On return, the numeric variable "INDEX" will contain a -1 if the
name does not appear in the list. If the name is in the list, then
the INDEX variable will contain the position of the name within the
list. A literal string could be used instead:

CMD LOOKUP, NM$(#), "JOHN JONES", INDEX

POINT NUMBER 1
Notice that the MARKER used by the LOOKUP command is the "#"
symbol.

LOOKUP EXAMPLE 2
Now suppose that the list is made up of 100 numbers instead of 100
names, and that the list was dimensioned as SCORE(100). To make
the example a little more solid, let's suppose that the numbers are

ARRAY LIBRARY -- PAGE 4

test scores. Jf the operator inputs the number 78 into the
variable XX, the LOOKUP command can be used to find out which (if
any) of the test scores are equal to this number by issuing the
command:

CMD LOOKUP, SCORE(#), XX, INDEX
The position of the first entry in the list equal to 78 will return
in the variable "INDEX". 1If there is no entry equal to 78, then
"INDEX" will return as -1.

POINT # 2
When searching an array for a match between two numeric items, the
LOOKUP command creates the "STR$" of each item before doing any
comparison. This makes it possible to match NUMERIC items in spite
of limitations due to questions of precision.

LOOKUP EXAMPLE 3
The really interesting applications for this command become
apparent when we begin to consider arrays that are more than a
simple list. In example 2, the LOOKUP command was used to find the
INDEX of a test score within a list of 100 test scores. Now let's
suppose that the test scores are stored in a array that was
dimensioned to keep the scores on all individuals in 3 different
classes, but let's assume that there are never more than 50 people
in a single class. An array dimensioned as SCORE(50,3) is perfect
for this purpose. The first SUBSCRIPT will pick out the
individual, and the second SUBSCRIPT identifies the class.

Now suppose that this array has some entries, and we want to find
out which person in class #2 got a test score of 78. 1Issue the
command :

CMD LOOKUP, SCORE(#,2), 78, INDEX
"INDEX" will return with the INDEX of the first person in class #2
that got a score of 78.

A NICE TOUCH
To continue this search from the point where it returned a match,
issue this command:

CMD LOOKUP , CONT , INDEX

This format of the LOOKUP command makes it possible to continue a
search using previously established parameters. If the variable
"INDEX" contains the value -1, then no further matches are
possible, and trying to CONT will generate an error. This aspect
of the LOOKUP command makes it possible to find all matches within
any SUBLIST of any array.

LOOKUP'S FINAL EXAMPLE
Example three looked up which person in class #2 got a test score
of 78. We could have used:

CMD LOOKUP, SCORE(13,#), 78, INDEX

This command will return the class number in which the 13th person
had a test score of 78. As a question, this seems pretty silly.
The point is, the LOOKUP command does not care which SUBSCRIPT of
an array is used to define a SUBLIST. Nor does it care how many

ARRAY LIBRARY -- PAGE 5

SUBSCRIPTs an array uses, as long as some SUBLIST is properly
defined before the LOOKUP command is used.

IN CASE YOU WERE CURIOUS
You might wonder why the INDEX parameter is used in this command.
It would be a lot easier to make an assignment to the INDEX
variable rather than just hanging it on the end of the command.
The problem is that the basic interpreter does not recognize the
CMD token as a valid part of any kind of EXPRESSION. Therefore
this command cannot be used on either side of the "=" sign.
Another good question to ask about the LOOKUP command is this:
IF AN ARRAY IS NAMED BY DIM AR(1,2,3)
HOW MANY SUBLISTS ARE IN THE ARRAY 277
The answer is, it contains:
3%4 + 2%4 + 2%3 = 26 sublists.
Even an array dimensioned as ARRAY(1,1) will contain 4 sublists.

REDIM DISCUSSION
The REDIM command is used to redimension existing arrays. It may
also be used to dimension arrays that do not exist. The format for
the ARRAY LIST parameter is identical to the format used by the
BASIC keyword DIM. The only difference is that any array name can
be used in the REDIM command, whether or not it already exists. -
Any information contained in an array that is used in the ARRAY
LIST will be lost.

	001.pdf
	002.pdf
	003.pdf
	004.pdf
	005.pdf
	006.pdf
	007.pdf
	008.pdf
	009.pdf
	010.pdf
	011.pdf
	012.pdf
	013.pdf
	014.pdf
	015.pdf
	016.pdf
	017.pdf
	018.pdf
	019.pdf
	020.pdf
	021.pdf
	022.pdf
	023.pdf
	024.pdf
	025.pdf
	026.pdf
	027.pdf
	028.pdf
	029.pdf
	030.pdf
	031.pdf
	032.pdf
	033.pdf
	034.pdf
	035.pdf
	036.pdf

